

October 2025

Commissioned by Dell Technologies, Inc.

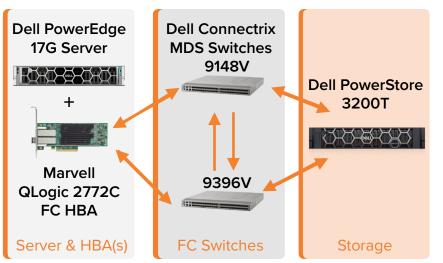
Dell PowerStore 32G Enterprise Storage Solution

Dell PowerEdge 17G with Marvell QLogic HBA, Connectrix MDS Switch, & PowerStore 3200T

EXECUTIVE SUMMARY

Modern data centers require storage infrastructure that delivers consistent performance, seamless interoperability, and robust resilience. As organizations deploy increasingly complex applications and workloads, the integration between servers, host bus adapters (HBAs), SAN switches, and storage arrays becomes critical to overall system reliability and performance.

Dell commissioned Tolly to evaluate the integrated capabilities of a joint solution featuring Dell PowerEdge 17th Generation servers with the Marvell QLogic QLE2772C 32G FC HBA, Dell Connectrix MDS 9148V & 9396V 32G/64G switches from Cisco Systems, and a Dell PowerStore 3200T 32G storage array. This evaluation focused on demonstrating the "better together" benefits when these Dell, Marvell, and Cisco Systems components are deployed as an integrated 32G FC solution.


Testing demonstrated seamless interoperability across all components with automatic link speed negotiation and LUN discovery without manual intervention, while exhibiting robust resilience during fault scenarios. Advanced congestion management with autonomous mitigation successfully maintained Quality of Service (QoS) during high-utilization periods, providing organizations with a comprehensive 32G-capable FC infrastructure combining proven interoperability, automated resilience, and advanced management capabilities in a unified platform. See Figure 1 for more details.

THE BOTTOM LINE

Dell PowerStore 32G Enterprise Storage Solution:

- 1 Comprehensive 32G Fibre Channel (FC) interoperability with seamless link negotiation and Logical Unit Number (LUN) discovery, congestion notifications across Dell, Marvell, and Cisco components
- 2 Automated resilience with rapid failover and recovery capabilities ensuring high availability for mission-critical workloads
- 3 Advanced congestion management through use of industry-standard congestion notification frames, Virtual Lanes collaborative technology, and I/O throttling
- 4 Integrated security and deep analytics capabilities providing end-to-end protection and visibility for Storage Area Network (SAN) environments

32G Storage Area Network (SAN) Architecture Under Test

From Server to Storage,
Dell's Unified 32GEnterprise Solution
Minimizes Infrastructure
Complexity While
Maximizing MissionCritical Uptime

Note: The Dell Connectrix MDS Switches are made by Cisco Systems. Source: Dell, Tolly, October 2025

Figure 1

Background

Multi-vendor, multi-component environments are the norm, rather than the exception. Customers need to have confidence that all of the components will work together to provide not only basic functionality, but advanced use cases for modern data centers. To that end, Tolly has conducted this test to model a proof of concept that one might find in practice.

Environment Overview

Testers built a microcosm of a 32G enterprise storage solution. This consisted of a single Dell 17G server connected via two ports of a single, dual-port HBA to different Dell Connectrix MDS 9xxxV FC switches. The Connectrix switches were connected via two links, configured as a port channel, to create a single, redundant fabric. A Dell PowerStore 3200T Array was connected to each of the two FC switches. The Dell 17G server was running RHEL 9.x and configured for multipath I/O.

Results

Interoperability

SANs are demanding and often complex environments. It is essential that storage solutions comprised of elements from different providers interoperate appropriately. These tests illustrate key interoperability features of the Dell, Cisco Systems, and Marvell QLogic technology. A summary of all results can be found in Table 1 on page 4.

Bandwidth / Link Speed Negotiation

The Connectrix MDS FC switch is capable of 64G though auto sensing down to 32G due to the presence of the 32G Marvell QLogic

adapter and the PowerStore's 32G ports. Testing demonstrated seamless interoperability across all components with automatic link speed negotiation at 32G.

Logical Unit Number (LUN) Discovery

LUN discovery occurred without manual intervention across the integrated solution. The Dell PowerStore 3200T storage array seamlessly presented logical units to the Dell PowerEdge server through the Dell Connectrix MDS SAN fabric, with proper multipath detection and configuration occurring automatically.

Congestion Control

Tested separately and discussed further down, the solution demonstrated interoperability for congestion notification across the fabric using the industry-standard Fabric Performance Impact Notification (FPIN) frames.

Resilience

Automatic and rapid recovery from component outages is essential in maintaining expected levels of availability and performance. The test environment was configured to have redundant paths from end-to-end.

HBA Port Resilience

As part of the server's multipath I/O subsystem, the dual-port HBA supports mapping a single LUN (disk) across multiple HBA ports. Not only can this be used for load balancing the traffic but it provides resilience against a port failure.

Engineers demonstrated this by first generating steady-state storage traffic. This traffic traversed both ports to the target LUN. One port was disabled via its connected

switch port. Engineers confirmed that traffic continued to flow over the remaining port.

Finally, the port in question was re-enabled. Engineers noted that the port automatically became available as a new backup port.

HBA Adapter Resilience - Port Isolation

While invisible to the user, Marvell QLogic architects its dual-port adapters as essentially two standalone adapters sharing the same PCle bus¹. Not only does each port have its own firmware, memory, and scheduler, each port has a dedicated processor. This means that a failure to any of these components will bring down only one port and not both ports of the adapter. Other vendors share resources across the two ports thus exposing both ports to failure if a single key component fails.

To test this capability, engineers used the Linux kernel "remove" function which is the equivalent of hot-unplugging a physical port. Engineers noted that traffic continued to run on the remaining port.

Because this command works at the PCle function (associated with the HBA Port) level, the fact that the remaining port was unaffected provides proof that the ports function as separate adapter cards and are thus isolated from one another. The Linux kernel "rescan" function was used to rediscover the PCle function associated with the HBA port. Engineers noted that traffic then began flowing once again over the port that had previously been removed.

FC Switch Fabric Resilience

When two or more FC switches are connected with two or more port channel links between each pair, the switches form a resilient network fabric.

¹ https://www.marvell.com/content/dam/marvell/en/public-collateral/fibre-channel/marvell-qLogic-fibre-channel-port-isolation-architecture-technology-brief.pdf

To validate this feature, engineers connected one port of the Marvell QLogic HBA in the Dell 17G server to "Switch A" and connected one port of the Dell PowerStore 3200T to "Switch B." The second ports on both the server and the storage array were disabled so that the only "end-to-end" path required traversing the switch-to-switch, dual-link port channel connection. The port channel links shared the switch-to-switch traffic load.

With traffic running, testers disabled one of the two ports. There was no disruption to the traffic flow as the remaining link seamlessly continued to carry the traffic. The traffic generation program continued to run without issue.

FC Switch Redundant PSU Resilience

When a FC switch is deployed with multiple power supply units, those additional units can automatically provide resilience should a single power supply fail.

This test was run in the same fashion as the prior fabric resilience test. Again, with traffic running across the switch, one of the power supplies was physically disconnected by lab personnel. As with the prior test, there was no disruption to the traffic flow and the traffic generation program continued to run without issue.

Storage Port Resilience

When hosts are configured to use multipath I/O, the OS creates a pseudo device that allows a single logical target to be accessed via multiple physical paths. The Dell PowerStore 3200T was configured with two ports connecting to different FC switches of the same logical fabric. One port was "active" and the other served as a "standby" port. The Dell PowerStore 3200T implements Asymmetric Logical Unit Access (ALUA). This provides for traffic running over one active

port with a second port running in standby for use should the active port fail for any reason.

With traffic running across the active port, the active port was disabled via a console command. Within about five seconds, the traffic was verified to be flowing across the "standby" port. The traffic generation program continued to run without issue.

Congestion Management

Autonomous congestion management successfully maintained Quality of Service (QoS) during high-utilization periods, providing organizations with a comprehensive 32G FC infrastructure combining proven interoperability, automated resilience, and advanced traffic management capabilities in a unified platform.

Marvell QLogic USCM

Marvell QLogic Universal SAN Congestion Management (USCM)² is a collaborative fabric-to-end-point flow control/congestion management architecture that optimizes performance for environments where slower devices and/or "bursty" application traffic can cause congestion. It is implemented using Fabric Performance Impact Notification (FPIN) messages from the switch to initiator ports to monitor buffer credit depletion. In response to such messages, Marvell QLogic

uses virtual lane technology and traffic throttling to manage the congestion.

Marvell QLogic Virtual Lane Technology

Traditionally, the FC-to-HBA port connection functions similarly to a single-lane highway. Traffic from different sessions are handled serially. For environments with mismatched FC speeds, for example, a combination of NVMe (flash) and HDD storage, or where latency-sensitive transactions have to share a port with database backup or logging functions, this could be problematic.

Virtual Lane technology is a cooperative solution between HBA and switch port. It functions similarly to a multi-lane highway. Traffic can be treated as fast, normal, or slow and can be queued and processed accordingly. This removes slow traffic from impeding other more critical traffic. See Figure 2 for a conceptual illustration.

This is new technology that requires the Marvell QLogic QLE2770 Series HBA (or the 64G QLE2870 Series HBA) with firmware version 9.12.00 or later. The Connectrix MDS switch must have NX-OS 9.3(2) or later. Both the Connectrix MDS FC switch and the HBA must be configured appropriately to use Virtual Lane technology.

To illustrate virtual lanes, engineers started the test generating traffic at near line-rate. The virtual lane assignment was monitored

² https://www.marvell.com/content/dam/marvell/en/public-collateral/fibre-channel/marvell-fibre-channel-uscm-tech-brief.pdf

through the kernel sysfs file created by Marvell HBA driver.

To simulate congestion and trigger virtual lanes, engineers manually sent FPIN (congestion notification) frames to the initiator HBA.

Linux log files were examined to confirm receipt of the FPIN frames. Then, the virtual lane assignments were monitored to confirm that the virtual lane had been updated and that impacted traffic had been quarantined to the "slow" lane.

Bandwidth Throttling

In cases where virtual lane assignment requires further mitigation to resolve the congestion situation, the adapters will automatically begin to reduce ("throttle") the traffic being transmitted from the HBA. Engineers observed reduction of the outbound traffic load once throttling was triggered. The bandwidth was reduced to less than 50% wire speed until the congestion cleared.

Once the congestion cleared, the Marvell QLogic HBA automatically and gradually increased the traffic flow back to its original rate. Once the traffic returned to its original

rate, the traffic stream was moved back to the "normal" virtual lane. Again, this was confirmed via the OS.

DIRL

Additionally, the Connectrix MDS FC switch offers Dynamic Ingress Rate Limiting as a method to mitigate congestion automatically without requiring any software or configuration on the HBA. This provides an additional option for legacy environments. Figure 3 on page 6 provides an overview of this technology.

Area	Test Case	Description	Result
Bandwidth Demonstration	32G	End-to-end 32G Fibre Channel connectivity	•
Interoperability	Link Negotiation	Auto-sense of server HBAs, FC switches and storage array to highest support link speed	~
	Logical Unit Number (LUN) Discovery/ Multipath	Automatic mapping of disk resources and access via multiple paths using multipath pseudo device	~
	Fabric Performance Impact Notification (FPIN) Congestion Notification	Connectrix MDS switch fabric proactively notifies host HBA about performance issues on the network data path. (This is both a congestion and interoperability feature.)	′
Resilience	Marvell QLogic Dual-port HBA Port Resilience	Multipath support automatically redirects traffic to use the remaining operational port (which was already active transmitting traffic)	•
	Marvell QLogic Dual-port HBA Adapter Resilience	Architected as two logically-separate adapters on a single physical adapter allows one port to be removed at the OS PCI level without impacting the other logical adapter where traffic continued to pass	V
	Connectrix MDS FC Multi-Switch Fabric Resilience	Removal of a single port of a port channel pair does not impact traffic flow across the switch fabric	~
	Dell Storage Array Port Resilience	Multipath support provides for automatic recovery to alternate path in ~5 seconds (using OS multipath default timers	~
Congestion Control	Virtual Lane Technology - Host / Fabric Congestion Management & Bandwidth Throttling	Fabric and host HBA dynamically migrate traffic to different lanes based on congestion detected in the network. "Single-lane" legacy session flow transformed into a "multi-lane" environment allowing traffic to be prioritized & quarantined as fast/normal/slow. Dynamically reduce oversubscribed transmit bandwidth as required via "throttling."	V

Additional Features

While beyond the scope of the current test project, the following are additional features & functions of the integrated solution:

Security

Dell Connectrix MDS

Dell Connectrix MDS switches provide comprehensive security capabilities including wire-speed, end-to-end frame encryption, silicon-based anti-counterfeit verification with secure boot processes, and line-rate port access control lists. The switches support hardware-isolated Virtual SAN domains with secure inter-VSAN routing capabilities, ensuring that sensitive data remains protected throughout the fabric infrastructure.

Marvell QLogic

In addition to CNSA-strength silicon "root of trust" for secure host boot, Marvell QLogic HBAs support comprehensive Encrypted Data in Flight (EDIF) that seamlessly and transparently protects FC SAN connections between servers and storage. This encryption operates at wire speed without impacting performance and integrates seamlessly with Cisco fabric security features.

Deep Analytics

Marvell QLogic HBAs offer comprehensive statistics including per-port performance metrics, error counters, and Virtual Lane utilization data that integrate with server management tools for end-to-end visibility. Dell PowerStore arrays contribute machine learning-based analytics for predictive failure analysis and capacity trending, creating a comprehensive monitoring ecosystem across the entire storage infrastructure stack. Dell Connectrix MDS switches provide detailed analytics including congestion heat-maps, credit-loss counters, and historical performance trending that enable proactive management of storage network performance. See Figure 4 on Page 6 for additional information on Cisco SAN analytics.

Source: Dell, Cisco Systems, & Marvell Tech.

Test Setup & Methodology

Most elements were discussed in the Test Results section and will not be repeated here. This section will provide additional information on the setup and execution for test cases as appropriate. Solutions under test and configuration details can be found in Tables 2-5 on Page 7.

Test Traffic Generation

Flexible IO tester, or FIO, is an opensource traffic generation tool³. FIO was used to generate traffic for the suite of tests. The bandwidth demonstration, interoperability, and resilience tests did not have specific traffic requirements. Resilience tests only required traffic to be traversing the elements under test.

The following is a test script used for general traffic. The specifics of the traffic are generally not important. For congestion tests, the traffic should be "WRITE IO" from the initiator. FIO generates traffic and is set to run for the duration of the test and be cancelled manually by the test engineer once the test completes. Congestion test FIO command:

fio --name=test --readwrite=rw -rwmixwrite=100 --invalidate=1 -end_fsync=0 --group_reporting -direct=1 --size=1G --time_based -runtime=600 --ioengine=libaio -norandommap --randrepeat=0 --thread -exitall --zero_buffers —filename=/dev/
disk/by-path/
fc-0x2100f4c7aaa09f3a-0x50000972100
fb00b-lun-0 --bs=1M -continue_on_error=all --iodepth=44 -numjobs=20 -cpus_allowed_policy=split.

Dell Technologies, Inc.

Dell PowerStore 32G Enterprise Storage Solution

Tested October 2025

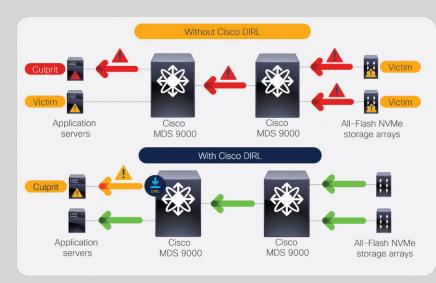
Switch Fabric Resilience

To test the switch fabric resilience, it was necessary to ensure that the path between the host system and the storage array had to traverse the dual port channel, inter-switch links (ISL).

To force this, engineers disabled the initiator's second link to "Switch B" and, similarly, disabled the storage array's link to "Switch A." Thus, the FIO traffic could only reach the storage array by entering "Switch A" and then crossing the ISL before exiting "Switch B" into the storage array.

Virtual Lanes & Throttling

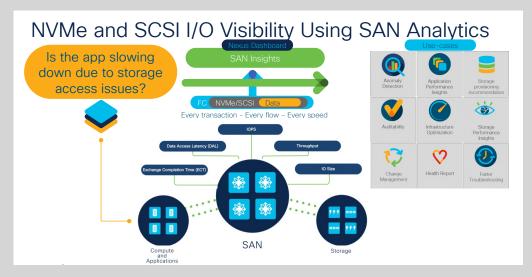
As noted, virtual lanes is a collaborative feature between the Marvell QLogic HBA and the FC switch fabric. Switch configuration consisted of just two commands: 1) feature fpm, and 2) system fc flow-control er_rdy logical-type all.


Similarly, the configuration on the HBA was equally straightforward and enabled both VL and throttling support. Those features can be used separately or in conjunction with each other. The driver was loaded with the following command: modprobe qla2xxx ql2xvirtuallane=1 ql2x_scmr_profile=3. This enabled VL support. The final parameter enabled aggressive throttling.

³ https://github.com/axboe/fio

Cisco Dynamic Ingress Rate Limiting (DIRL) Solution

Cisco Dynamic Ingress Rate Limiting (DIRL) is an innovative technology to bridge the performance gaps between the newer ultra-fast All-Flash NVMe storage Arrays (AFAs) and slower application servers. DIRL prevents the spreading of congestion caused by performance issues or slow-drain conditions in a Storage Area Network (SAN).


Benefits of DIRL

- End-device independent Upgrading of enddevices is not needed.
- Adaptive DIRL dynamically adjusts as per the traffic profile of the host.
- Affordable No additional license is needed.
- Easy adoption DIRL is available on the Cisco MDS 9000 Series Multilayer Switches after a softwareonly upgrade.
- No side effects The rate-limiting is applied only to the congested host. Other non-congested hosts and storage ports are not impacted.
- Topology independent DIRL works in edge-core, edge-core-edge, or collapsed core (single switch fabric) topologies.

Source: Cisco Systems Figure 3

Cisco FC Switch SAN Analytics

Dell Connectrix MDS switches, manufactured by Cisco, provide the fabric of the SAN and, thus, handle all traffic between servers and storage. The switch is architected to inspect traffic using built-in taps, calculate metrics from frame headers, and export that data to external receivers via SAN Telemetry Streaming (STS). That information feeds the Nexus dashboard to help identify, isolate, and resolve issues that can be contributing to a slowdown of storage access and help meet and exceed user service level agreements.

Source: Cisco Systems Figure 4

Test Configuration Summary

Dell 17th Generation Server Configuration

Vendor/System	Dell PowerEdge R760 (1RU)
CPU	2x Intel Xeon 6710E, model 175 stepping 3, 2400 MT/s, 64 cores each
Number of CPUs	128 processors (2x 64 cores)
Memory (RAM)	512 GB
os	OS: RHEL 9.6 Kernel: 5.14.0-570.49.1.el9_6.x86_64
Kernel Settings	Multipath enabled with default settings

Table 2

Storage Array Configuration

Vendor/Device	Dell PowerStore 3200T
Software	PowerStore OS 4.1.0.0
Configuration Notes	2x 32GB FC ports, one connected to each of the two FC switches

Table 3

Network Fabric

Vendor/Device	Dell Connectrix MDS 9148V (48X64G FC 1RU Chassis) & 9396V (96X64G FC 2 RU Chassis)
Software	NX-OS 9.4(3b)
Configuration Notes	Virtual Lanes capable. 64G-capable, will auto-sense to 32G
	Table 4

Source: Tolly, October 2025

Server Host Bus Adapter(s)

Vendor/ Device	Marvell QLogic	
Product Name	Marvell QLogic 2772C 32G FC HBA (dual-port adapter)	
Firmware	9.15.03	
Drivers	QLA Driver: 10.02.14.00-k (June 2025 Dell/Channel release)	
Settings	Virtual Lanes support enabled	
	Table 5	

Table 5

About Tolly

The Tolly Group companies have been delivering world-class IT services for more than 35 years. Tolly is a leading global provider of third-party validation services for vendors of IT products, components and services.

You can reach the company by E-mail at <u>info@tolly.com</u>, or by telephone at +1 561.391.5610.

Visit Tolly on the Internet at: http://www.tolly.com

Terms of Usage

This document is provided, free-of-charge, to help you understand whether a given product, technology or service merits additional investigation for your particular needs. Any decision to purchase a product must be based on your own assessment of suitability based on your needs. The document should never be used as a substitute for advice from a qualified IT or business professional. This evaluation was focused on illustrating specific features and/or performance of the product(s) and was conducted under controlled, laboratory conditions. Certain tests may have been tailored to reflect performance under ideal conditions; performance may vary under real-world conditions. Users should run tests based on their own real-world scenarios to validate performance for their own networks.

Reasonable efforts were made to ensure the accuracy of the data contained herein but errors and/or oversights can occur. The test/ audit documented herein may also rely on various test tools the accuracy of which is beyond our control. Furthermore, the document relies on certain representations by the sponsor that are beyond our control to verify. Among these is that the software/ hardware tested is production or production track and is, or will be, available in equivalent or better form to commercial customers. Accordingly, this document is provided "as is," and Tolly Enterprises, LLC (Tolly) gives no warranty, representation or undertaking, whether express or implied, and accepts no legal responsibility, whether direct or indirect, for the accuracy, completeness, usefulness or suitability of any information contained herein. By reviewing this document, you agree that your use of any information contained herein is at your own risk, and you accept all risks and responsibility for losses, damages, costs and other consequences resulting directly or indirectly from any information or material available on it. Tolly is not responsible for, and you agree to hold Tolly and its related affiliates harmless from any loss, harm, injury or damage resulting from or arising out of your use of or reliance on any of the information provided herein.

Tolly makes no claim as to whether any product or company described herein is suitable for investment. You should obtain your own independent professional advice, whether legal, accounting or otherwise, before proceeding with any investment or project related to any information, products or companies described herein. When foreign translations exist, the English document is considered authoritative. To assure accuracy, only use documents downloaded directly from Tolly.com. No part of any document may be reproduced, in whole or in part, without the specific written permission of Tolly. All trademarks used in the document are owned by their respective owners. You agree not to use any trademark in or as the whole or part of your own trademarks in connection with any activities, products or services which are not ours, or in a manner which may be confusing, misleading or deceptive or in a manner that disparages us or our information, projects or developments.

Ef-32-wt-2025-10-21---VerR