

DPUs: Where Will They Go Next?

Manoj Roge Sr Director, Processor Business Unit, Marvell Linley Fall Processor Conference, November 2022

Forward-looking statements

Except for statements of historical fact, this presentation contains forward-looking statements (within the meaning of the federal securities laws) including, but not limited to, statements related to market trends and to the company's business and operations, business opportunities, growth strategy and expectations, and financial targets and plans, that involve risks and uncertainties. Words such as "anticipates," "expects," "intends," "plans," "projects," "believes," "seeks," "estimates," "can," "may," "will," "would" and similar expressions identify such forward-looking statements. These statements are not guarantees of results and should not be considered as an indication of future activity or future performance. Actual events or results may differ materially from those described in this presentation due to a number of risks and uncertainties.

For factors that could cause Marvell's results to vary from expectations, please see the risk factors identified in Marvell's Quarterly Report on Form 10-Q for the fiscal quarter ended July 30, 2022, as filed with the SEC on August 26, 2022, and Marvell's Annual Report on Form 10-K for the fiscal year ended January 29, 2022, as filed with the SEC on March 10, 2022, and other factors detailed from time to time in Marvell's filings with the SEC. The forward-looking statements in this presentation speak only as of the date of this presentation and Marvell undertakes no obligation to revise or update publicly any forward-looking statements.

DPU need driven by data centric applications

Future Data Centers: Composable, software-defined, hardware-accelerated

DPUs manage composability, accelerate workloads

DPU in every server!

Our View of a Data Center Computer	ENA PCIe Controller Image: Controller VPC Data Plane Image: Controller NVMe PCie Controller Image: Controller Transparent Encryption Image: Controller Root of Trust Image: Controller			
Microsoft H2RC'16: "CPU is complexity offload engine for FPGA!" ¹	Amazon 2019 re:Invent – "All new instance launches use the Nitro System" ²			
Accelerometer: Understanding Acceleration Opportunities for Data Center Overheads at Hyperscale Akshitha Sriraman ⁺ Abhishek Dhanotia [†] University of Michigar ¹ , Facebook ¹ akshithaddight.com	Profiling a warehouse-scale computer Svilen Kanev [†] Juan Pablo Darago [†] Kim Hazelwood [†] Harvard University Juan Pablo Darago [†] Yahoo Labs Parthasarathy Ranganathan Tipp Moseley Gu-Yeon Wei David Brooks Google Harvard University Harvard University Broogle Baroad University Barvard University			
"Microservices spend as few as 18% of CPU cycles executing core application logic" ³	"Data center Tax" can comprise nearly 30% of cycles ⁴			

- 1: H2RC 2016 keynote.
- 2: AWS reinvent 2019
- 3: Accelerometer paper
- 4: Profiling a warehouse-scale computer paper

Transition to virtualization

Traditional wireline appliances

Traditional RAN/carrier

Data center

Applications require versatile mix of accelerators

OCTEON®: the original DPU platform

OCTEON® 10 architectural overview

Scalable Compute

ARMv9.0 64-bit Neoverse N2 cores

Memory subsystem and connectivity

- IMB/core L2, 2MB shared last level cache
- DDR5 w/ sideband-ECC and memory encryption
- XCalibur mesh interconnect

Hardware acceleration

- Highly-virtualized, software-friendly NIC
- Packet processing, QoS, hierarchical queues with shaper and WDRR scheduler
- Inline and Co-processor security (SSL/IPSec)
- Compression, Decompression
- Inline ML inference engine
- Secure boot + embedded hardware security module

Platform strategy

- DPU PCIe cards
- Robust and open source software support
- Partner ecosystem

Marvell PCIe accelerator cards

	CN98	CN106	CN103	
Part Number	WA-CN98-A1-PCIE-4P100-R1	WA-CN106-A1-PCIE-2P100-R1	WA-CN103-A0-PCIE-4P50-R1	
Port config	onfig 4x 100G PAM4 2x 100G PAM4		4x 50G PAM4	
PCle	Gen4	Gen5	Gen5	
Core	36x ARM V8 TX2	24x ARM V9 N2	8x ARM V9 N2	
Availability	Now	*	1Q CY23	
		Announcing General availability!		

CN106 based PCIe card

Part number	WA-CN106-A1-PCIE-2P100-R1			
Features	Capability			
Ι/Ο	2 x 100G PAM4 PCIe Gen 5			
Memory	6 x 40bit DDR5@ 5200MTs w/ECC, 8-40GB total			
ARM cores	24 ARM N2, 2.5GHz, 100 SPECINT2017			
Performance	120 MPPS, 120Gbps			
IPSEC, RSA 2K, 1KB OpenSSL, TLS1.3 support	120Gbps IPSEC, 24Kops RSA 2K, 120Gbps 1KB OpenSSL			
Hard ML block	Yes, 16TOPS			

Availability	Date		
SDK11 support	Now		
Order in qty	Nov 2022		

DPU solutions

Industry-leading 5G infrastructure portfolio

5G O-RAN solution: open, scalable, best-in-class

Vodafone and Nokia have agreed to jointly work on a fully compliant Open Radio Access Network (RAN) solution, marking a significant milestone for the mobile industry and a major boost to Europe's competitiveness.

The combination of Nokia's ReefShark advanced System on Chip (SoC) technology, developed in cooperation with Marvell, with standard Commercial-Off-the-Shelf (COTS) servers will enable the Open RAN system to reach functionality and performance parity with traditional mobile radio networks. Nokia's ReefShark SoC boosts the Layer-1 processing capability, which is necessary to connect many users to the mobile base station and support high levels of mobile data traffic.

Data Center use cases

Network offload

Accelerate networking functions

Security offload

3

Isolate tenants from host

DPU delivers performance, programmability & lower TCO

Enterprise use cases

High-end router, Firewall/security data plane

Data plane only

Switch, WLAN controller Line card/controller

Benchmarks

Compute performance

- SPECINT2006
- SPECINT2017
- CoreMark

Memory subsystem

- LMbench
- Stream

- TestPMD
- L3 Forwarding
- iPerf / Netperf

Application benchmark

- IPSec gateway
- kTLS
- Open offload
- SNORT/Hyperscan
- NVMEoF
- ML Inference

200Gbps open offload performance

- Full Firewall VM running on Host server
- Marvell DPU as fast path engine maintain route/firewall cache based on OpenOffload

CN98xx 2Ghz, 2x100G							
Data plane cores	64B		512B		1518B		
	Mpps	Gbps	Mpps	Gbps	Mpps	Gbps	
2	3.54	2.38	3.54	15.1	3.46	42.5	
10	15.7	10.6	15.7	67.1	15.6	191.9	
30	43.1	28.9	43.1	183.5	16.2	200	

Integrated ML engine

Best-in-class DPU inferencing

- Directly in the data pipeline
- Each ML tile contains private SRAM
- Ultra low power
- Up to 100x performance vs SW
 - Supports Int8, FP16
 - Accelerated Tanh and Sigmoid activation functions

Use cases

- Threat detection
- Context-aware service delivery
- QoS
- Beamforming optimization
- Predictive maintenance

Summary

Software-defined infrastructure requires hardware acceleration – OCTEON[®] portfolio has right accelerators to deliver best solution TCO

Unified software stack built on open source frameworks and benchmarks demonstrate leadership across broad workloads

2

3

Thank You

Essential technology, done right[™]