构建面向未来的数据基础设施

Archive for the 'Ethernet Switching' Category

  • September 11, 2023

    汽车中央交换机: 汽车进化的最新进展

    By Amir Bar-Niv, VP of Marketing, Automotive Business Unit, Marvell

    When you hear people refer to cars as “data centers on wheels,” they’re usually thinking about how an individual experiences enhanced digital capabilities in a car, such as streaming media on-demand or new software-defined services for enhancing the driving experience.

    But there’s an important implication lurking behind the statement. For cars to take on tasks that require data center-like versatility, they need to be built like data centers. Automakers in conjunction with hardware makers and software developers are going to have to develop a portfolio of highly specialized technologies that work together, based around similar architectural concepts, to deliver the capabilities needed for the software-defined vehicle while at the same time keeping power and cost to a minimum. It’s not an easy balancing act.

    Which brings us to the emergence of a new category of products for the zonal architecture, specifically zonal and the associated automotive central Ethernet switches. Today’s car networks are built around domain localized networks: speakers, video screens and other infotainment devices link to the infotainment ECU, while powertrain and brakes are part of the body domain, and ADAS domain is based on the sensors and high-performance processors. Bandwidth and security can be form-fitted to the application.

  • March 02, 2023

    Introducing the 51.2T Teralynx 10, the Industry’s Lowest Latency Programmable Switch

    By Amit Sanyal, Senior Director, Product Marketing, Marvell

    If you’re one of the 100+ million monthly users of ChatGPT—or have dabbled with Google’s Bard or Microsoft’s Bing AI—you’re proof that AI has entered the mainstream consumer market.

    And what’s entered the consumer mass-market will inevitably make its way to the enterprise, an even larger market for AI. There are hundreds of generative AI startups racing to make it so. And those responsible for making these AI tools accessible—cloud data center operators—are investing heavily to keep up with current and anticipated demand.

    Of course, it’s not just the latest AI language models driving the coming infrastructure upgrade cycle. Operators will pay equal attention to improving general purpose cloud infrastructure too, as well as take steps to further automate and simplify operations.

    Teralynx 10

    To help operators meet their scaling and efficiency objectives, today Marvell introduces Teralynx® 10, a 51.2 Tbps programmable 5nm monolithic switch chip designed to address the operator bandwidth explosion while meeting stringent power- and cost-per-bit requirements. It’s intended for leaf and spine applications in next-generation data center networks, as well as AI/ML and high-performance computing (HPC) fabrics.

    A single Teralynx 10 replaces twelve of the 12.8 Tbps generation, the last to see widespread deployment. The resulting savings are impressive: 80% power reduction for equivalent capacity.

  • February 21, 2023

    Marvell 和 Aviz Networks 合作推动 SONiC 在云和企业数据中心的部署

    By Kant Deshpande, Director, Product Management, Marvell

    Disaggregation is the future
    Disaggregation—the decoupling of hardware and software—is arguably the future of networking. Disaggregation lets customers select best-of-breed hardware and software, enabling rapid innovation by separating the hardware and software development paths.

    Disaggregation started with server virtualization and is being adapted to storage and networking technology. In networking, disaggregation promises that any networking operating system (NOS) can be integrated with any switch silicon. Open source-standards like ONIE allow a networking switch to load and install any NOS during the boot process.

    SONiC: the Linux of networking OS
    Software for Open Networking in Cloud (SONiC) has been gaining momentum as the preferred open-source cloud-scale network operating system (NOS).

    In fact, Gartner predicts that by 2025, 40% of organizations that operate large data center networks (greater than 200 switches) will run SONiC in a production environment.[i] According to Gartner, due to readily expanding customer interest and a commercial ecosystem, there is a strong possibility SONiC will become analogous to Linux for networking operating systems in next three to six years.

  • February 14, 2023

    下一代数据中心网络化需要做的三件事

    By Amit Sanyal, Senior Director, Product Marketing, Marvell

    Data centers are arguably the most important buildings in the world. Virtually everything we do—from ordinary business transactions to keeping in touch with relatives and friends—is accomplished, or at least assisted, by racks of equipment in large, low-slung facilities.

    And whether they know it or not, your family and friends are causing data center operators to spend more money. But it’s for a good cause: it allows your family and friends (and you) to continue their voracious consumption, purchasing and sharing of every kind of content—via the cloud.

    Of course, it’s not only the personal habits of your family and friends that are causing operators to spend. The enterprise is equally responsible. They’re collecting data like never before, storing it in data lakes and applying analytics and machine learning tools—both to improve user experience, via recommendations, for example, and to process and analyze that data for economic gain. This is on top of the relentless, expanding adoption of cloud services.

  • January 18, 2023

    在工业网络中使用时敏网络实现网络可见性

    By Zvi Shmilovici Leib, Distinguished Engineer, Marvell

    Industry 4.0 is redefining how industrial networks behave and how they are operated. Industrial networks are mission-critical by nature and have always required timely delivery and deterministic behavior. With Industry 4.0, these networks are becoming artificial intelligence-based, automated and self-healing, as well. As part of this evolution, industrial networks are experiencing the convergence of two previously independent networks: information technology (IT) and operational technology (OT). Time Sensitive Networking (TSN) is facilitating this convergence by enabling the use of Ethernet standards-based deterministic latency to address the needs of both the IT and OT realms.

    However, the transition to TSN brings new challenges and requires fresh solutions for industrial network visibility. In this blog, we will focus on the ways in which visibility tools are evolving to address the needs of both IT managers and those who operate the new time-sensitive networks.

    Why do we need visibility tools in industrial networks? 

    Networks are at the heart of the industry 4.0 revolution, ensuring nonstop industrial automation operation. These industrial networks operate 24/7, frequently in remote locations with minimal human presence. The primary users of the industrial network are not humans but, rather, machines that cannot “open tickets.” And, of course, these machines are even more diverse than their human analogs. Each application and each type of machine can be considered a unique user, with different needs and different network “expectations.”

  • November 08, 2022

    TSN 和 Prestera DX1500: 跨越 IT/OT 鸿沟的桥梁

    By Reza Eltejaein, Director, Product Marketing, Marvell

    Manufacturers, power utilities and other industrial companies stand to gain the most in digital transformation. Manufacturing and construction industries account for 37 percent of total energy used globally*, for instance, more than any other sector. By fine-tuning operations with AI, some manufacturers can reduce carbon emission by up to 20 percent and save millions of dollars in the process.

    Industry, however, remains relatively un-digitized and gaps often exist between operational technology – the robots, furnaces and other equipment on factory floors—and the servers and storage systems that make up a company’s IT footprint. Without that linkage, organizations can’t take advantage of Industrial Internet of Things (IIoT) technologies, also referred to as Industry 4.0. Of the 232.6 million pieces of fixed industrial equipment installed in 2020, only 10 percent were IIoT-enabled.

    Why the gap? IT often hasn’t been good enough. Plants operate on exacting specifications. Engineers and plant managers need a “live” picture of operations with continual updates on temperature, pressure, power consumption and other variables from hundreds, if not thousands, of devices. Dropped, corrupted or mis-transmitted data can lead to unanticipated downtime—a $50 billion year problem—as well as injuries, blackouts, and even explosions.

    To date, getting around these problems has required industrial applications to build around proprietary standards and/or complex component sets. These systems work—and work well—but they are largely cut off from the digital transformation unfolding outside the factory walls.

    The new Prestera® DX1500 switch family is aimed squarely at bridging this divide, with Marvell extending its modern borderless enterprise offering into industrial applications. Based on the IEEE 802.1AS-2020 standard for Time-Sensitive Networking (TSN), Prestera DX1500 combines the performance requirements of industry with the economies of scale and pace of innovation of standards-based Ethernet technology. Additionally, we integrated the CPU and the switch—and in some models the PHY—into a single chip to dramatically reduce power, board space and design complexity.

    Done right, TSN will lower the CapEx and OpEx for industrial technology, open the door to integrating Industry 4.0 practices and simplify the process of bringing new equipment to market.

  • December 06, 2021

    Marvell 和 Ingrasys 携手为数据中心使用 EBOF 的 Ceph 集群提供支持

    By Khurram Malik, Senior Manager, Technical Marketing, Marvell

    A massive amount of data is being generated at the edge, data center and in the cloud, driving scale out Software-Defined Storage (SDS) which, in turn, is enabling the industry to modernize data centers for large scale deployments. Ceph is an open-source, distributed object storage and massively scalable SDS platform, contributed to by a wide range of major high-performance computing (HPC) and storage vendors. Ceph BlueStore back-end storage removes the Ceph cluster performance bottleneck, allowing users to store objects directly on raw block devices and bypass the file system layer, which is specifically critical in boosting the adoption of NVMe SSDs in the Ceph cluster. Ceph cluster with EBOF provides a scalable, high-performance and cost-optimized solution and is a perfect use case for many HPC applications. Traditional data storage technology leverages special-purpose compute, networking, and storage hardware to optimize performance and requires proprietary software for management and administration. As a result, IT organizations neither scale-out nor make it feasible to deploy petabyte or exabyte data storage from a CAPEX and OPEX perspective.
    Ingrasys (subsidiary of Foxconn) is collaborating with Marvell to introduce an Ethernet Bunch of Flash (EBOF) storage solution which truly enables scale-out architecture for data center deployments. EBOF architecture disaggregates storage from compute and provides limitless scalability, better utilization of NVMe SSDs, and deploys single-ported NVMe SSDs in a high-availability configuration on an enclosure level with no single point of failure.

    Power Ceph Cluster with EBOF in Data Centers image 1

    Ceph is deployed on commodity hardware and built on multi-petabyte storage clusters. It is highly flexible due to its distributed nature. EBOF use in a Ceph cluster enables added storage capacity to scale up and scale out at an optimized cost and facilitates high-bandwidth utilization of SSDs. A typical rack-level Ceph solution includes a networking switch for client, and cluster connectivity; a minimum of 3 monitor nodes per cluster for high availability and resiliency; and Object Storage Daemon (OSD) host for data storage, replication, and data recovery operations. Traditionally, Ceph recommends 3 replicas at a minimum to distribute copies of the data and assure that the copies are stored on different storage nodes for replication, but this results in lower usable capacity and consumes higher bandwidth. Another challenge is that data redundancy and replication are compute-intensive and add significant latency. To overcome all these challenges, Ingrasys has introduced a more efficient Ceph cluster rack developed with management software – Ingrasys Composable Disaggregate Infrastructure (CDI) Director.

  • November 09, 2021

    5G 无线电接入网的网络可见性,第 2 篇

    By Gidi Navon, Senior Principal Architect, Marvell

    In part one of this blog, we discussed the ways the Radio Access Network (RAN) is dramatically changing with the introduction of 5G networks and the growing importance of network visibility for mobile network operators. In part two of this blog, we’ll delve into resource monitoring and Open RAN monitoring, and further explain how Marvell’s Prestera® switches equipped with TrackIQ visibility tools can ensure the smooth operation of the network for operators.

    Resource monitoring

  • October 18, 2021

    5G 无线电接入网的网络可见性,第 1 篇

    By Gidi Navon, Senior Principal Architect, Marvell

    In this blog, we will demonstrate how Marvell’s Prestera® switches equipped with TrackIQ visibility tools are evolving to address the unique needs of such networks.

    The changing RAN

    Lately, with the introduction of 5G services, the RAN is undergoing several changes as shown in Figure 1 below:

  • October 11, 2021

    推动下一代零售网络创新的趋势

    By Amit Thakkar, Senior Director, Product Management, Marvell

    Highlighted below are five emerging technology trends in enterprise networking that are driving innovations in the retail industry to build the modern store experience.

  • October 03, 2021

    利用下一代以太网释放 5G 网络性能

    By Alik Fishman, Director of Product Management, Marvell

    Blink your eyes. That’s how fast data will travel from your future 5G-enabled device, over the network to a server and back. Like Formula 1 racing cars needing special tracks for optimal performance, 5G requires agile networking transport infrastructure to unleash its full potential. The 5G radio access network (RAN) requires not only base stations with higher throughputs and soaring speeds but also an advanced transport network, capable of securely delivering fast response times to mobile end points, whatever those might be: phones, cars or IoT devices. Radio site densification and Massive Machine-type Communication (mMTC) technology are rapidly scaling the mobile network to support billions of end devices1, amplifying the key role of network transport to enable instant and reliable connectivity.

    With Ethernet being adopted as the most efficient transport technology, carrier routers and switches are tasked to support a variety of use cases over shared infrastructure, driving the growth in Ethernet gear installations. In traditional cellular networks, baseband and radio resources were co-located and dedicated at each cell site. This created significant challenges to support growth and shifts in traffic patterns with available capacity. With the emergence of more flexible centralized architectures such as C-RAN, baseband processing resources are pooled in base station hubs called central units (CUs) and distributed units (DUs) and dynamically shared with remote radio units (RUs). This creates even larger concentrations of traffic to be moved to and from these hubs over the network transport.

  • January 14, 2021

    By Wolfgang Sauter, Customer Solutions Architect - Packaging, Marvel

    1

  • November 01, 2020

    无边界企业中的卓越性能 – 白皮书

    By Gidi Navon, Senior Principal Architect, Marvell



  • October 20, 2020

    By Gidi Navon, Senior Principal Architect, Marvell

    network visibility

  • July 28, 2020

    实现网络处理边缘化: 安全

    By Alik Fishman, Director of Product Management, Marvell

    我们在先前的“实现网络处理边缘化”系列中探讨了将智能、性能和遥测向网络边缘推进的相关趋势。 本部分将介绍网络安全的角色转变,以及将安全功能整合至网络接入的方法。这些方法可以在整个基础设施内有效推动策略实施、保护和修复的简化。

    随着移动设备和物联网设备等新数据源在工作场所的快速普及,遭黑客攻击和遭泄露的数据数量也迅猛增长。不少企业深受其害,网络安全威胁成为困扰他们的日常难题。 安全漏洞也呈现新的发展趋势,不但数量持续上升,严重性和持续时间也在增长,从入侵到控制的平均生命周期长达近一年,1给运营带来巨大的成本压力。 而数字化转型和新兴技术格局(远程访问、云原生模型、物联网设备激增等)的出现,使网络架构和运营受到巨大影响,也催生出新的安全风险。 大刀阔斧地变革企业基础设施,提升网络智能、性能、可视性和安全性2,已经刻不容缓。

  • July 23, 2020

    遥测: 您的边缘可见性如何?

    作者:软件工程高级总监 Suresh Ravindran

    我们在先前的“利用网络边缘计算”系列中探讨了将智能和性能向网络边缘推进的相关趋势。 这篇博客将谈谈对于网络可见性的需求。

    随着自动化趋势不断演进,互联设备数量呈现 爆炸式增长。 据 IDC 估计,到 2025 年将有 416 亿台设备 连接至物联网 (loT),生成多达 79.4 泽字节的海量数据1。 视频流和 传感器流量在这类流量中将占到相当大的比例, 需针对混合云模式中的个性化用户服务、 库存管理、入侵防护和负载平衡等应用进行 智能处理。 联网设备将需要具备智能管理 资源处理的能力,才能高效地处理 海量数据流。

  • July 16, 2020

    对边缘速度的需求

    作者:Marvell 公司资深架构师 George Hervey

    Marvell 推动网络智能和相关处理边缘化发展

    在之前的实现网络处理边缘化的相关提示中,我们了解到推动网络智能边缘化发展的趋势。 通过 5G 等崭新无线网络技术 所赋予的容量, 这种基础设施将有力推动创新型应用的开发。 此类应用 大多采用高频活动模型,例如视频或传感器, 其中的活动通常由设备自行发起,从而产生大量 跨网络基础设施传输的数据。 思科的 VNI 预测要闻预计, 2017 到 2022 年,全球移动数据流量将增长 6 倍,或相当于 42% 的年增长速度1,网络性能升级成为需求趋势。

  • July 08, 2020

    推动网络智能和相关处理边缘化发展

    作者:Marvell 公司资深架构师 George Hervey

    Marvell 推动网络智能和相关处理边缘化发展

    随着我们迈向“永远在线,始终连接”(Always On,Always Connected)模式的更高阶段,手机已然成为我们生活中的核心部分。 手机为我们提供对数据和通信媒介的即时访问,这种方式的访问影响着我们的决定,并最终影响我们的行为。

    据思科预计,到 2022 年,全球移动网络将支持超过 120 亿台移动设备和物联网 (loT) 连接。1 这些移动设备将支持多种功能。 手机已经取代了各种小工具,为我们提供多种服务。 如果手机可以提供 Apple Pay、Google Pay 或电子支付功能,即没有必要随身携带钱包。 如果手机可以解锁并启动汽车或打开车库门,即没有必要随身携带车钥匙。 现在,应用程序还包括实时流媒体服务,这些服务可支持 VR/AR 体验和实时共享。 未来的移动服务和应用程序似乎充满各种可能,它们依然需要下一代数据基础架构来支持和促进其发展。

  • April 01, 2019

    变革数据中心架构,迎接互联智能新纪元

    作者:Marvell 公司资深架构师 George Hervey

    超大规模的云数据中心架构已存在多年,也足以支持全球数据需求,但依然挡不住重大改变的发生。  新兴的 5G、工业自动化、智慧城市和自动驾驶汽车,都在推动数据需求朝着可直接在网络边缘获取的方向发展。   数据中心需要新的架构,来支持这些新要求,包括降低功耗、低延迟、缩减占用空间和组合式基础架构。

    可组合性所带来的数据存储资源解聚,可成就更加灵活高效的平台,满足数据中心的需求。  不过,这当然需要有出色的交换机解决方案提供支持。  Marvell® Prestera® CX 8500 以太网交换机产品组合的运行速度可达 12.8Tbps,拥有以下两大关键创新,致力于重新定义数据中心架构: 切片 Terabit 以太网路由器转发架构 (FASTER) 技术和储存感知流引擎 (SAFE) 技术。

    Marvell Prestera CX 8500 产品系列借助 FASTER 和 SAFE 技术,可以将整体网络成本降低 50% 以上;确保更低的功耗、空间与延迟;并可通过完善的按流量可见性,准确定位发生拥塞问题的位置。

    观看下方视频,深入了解 Marvell Prestera CX 8500 设备如何成为数据中心架构的革命性方案。

       

  • March 06, 2019

    组合式基础架构: 令人振奋的以太网交换机新前景

    作者:Marvell 公司资深架构师 George Hervey

    数据中心的网络格局正在发生巨变。   适应性更好、运行效率更高的组合式基础架构将取代过去灵活性不足且相互孤立的传统数据中心结构,快速获得显著增长,并走向普及。

    组合式基础架构采用一种现代化的软件定义方法来进行数据中心实施。 这意味着,通过使用 NMVe 和 NVMe-over-Fabric 协议,您将可以采用一个更通用的架构,而不必构建专门的存储区域网络 (SAN)。

    Whereas previously data centers had separate resources for each key task, composable infrastructure enables compute, storage and networking capacity to be pooled together, with each function being accessible via a single unified fabric.  This brings far greater operational efficiency levels, with better allocation of available resources and less risk of over provisioning --- critical as edge data centers are introduced to the network, offering solutions for different workload demands. 

    Composable infrastructure will be highly advantageous to the next wave of data center implementations though the increased degree of abstraction that comes along presents certain challenges --- these are mainly in terms of dealing with acute network congestion --- especially in relation to multiple host scenarios. Serious congestion issues can occur, for example, when there are several hosts attempting to retrieve data from a particular part of the storage resource simultaneously.  Such problems will be exacerbated in larger scale deployments, where there are several network layers that need to be considered and the degree of visibility is thus more restricted. 

    企业急需一款更具创新性的数据中心协调方法。 而这需要精简网络架构,以便顺利迁移至包含较少网络层的组合式基础架构,进而提高透明度,并减少拥堵。

    这种新方法将简化数据中心实施,无需过多投资购置昂贵的硬件,而且还可大大降低延迟和功耗。

    Further, the integration of advanced analytical mechanisms is certain to be of huge value here as well --- helping with more effective network management and facilitating network diagnostic activities.  Storage and compute resources will be better allocated to where there is the greatest need. Stranded capacity will no longer be a heavy financial burden. 

    利用大幅优化后的架构,数据中心将能够轻松迁移至组合式基础架构。  网络管理者将可以更好地了解流量层面发生的情况,并及时部署适当的响应措施。未来投资将更加有的放矢,提高系统利用率。

  • June 07, 2018

    通用的新款以太网交换机同时满足多个行业领域的需求

    作者:Ran Gu,Marvell 公司交换机产品线市场总监

    由于持续的技术发展和潜在的市场需求,具有 10G 上行链路的千兆以太网 (GbE) 技术已经开始大量延伸到有高带宽需求的面向不同应用的网络基础设施,这些应用包括: SMB 交换机、工业交换、SOHO 路由器、企业网关和通用客户终端设备 (uCPE) 等。 全新的 Marvell® Link Street™ 88E6393X 具有丰富的功能特性、高扩展性、高性价比等特性,为用户提供一种非常具有吸引力的、适用多个行业的交换机 IC 解决方案。

    88E6393X 交换机 IC 集成了 1000BASE-T PHY 和 10 Gbps 光纤端口功能,同时功耗只是竞争对手方案的 60%。 尽管采用了紧凑型封装,这款新型交换机IC能够提供 8 个三速 (10/100/1000) 以太网端口以及 3 个 10G XFI/SFI 端口,并且内置 200 MHz 微处理器。 Its SFI support means that the switch can connect to a fiber module without the need to include an external PHY - thereby saving space and bill-of-materials (BoM) costs, as well as simplifying the design. 88E6393X 支持 IEEE 802.1BR 端口扩展功能,可以在降低管理开销和控制运营支出 (OPEX) 方面发挥重要作用。 另外,它还包含用于 IP 转发目的的 L3 路由支持。Marvell Link Street 88E6393X 它符合崭新的时间敏感网络 (TSN) 协议(例如 802.1AS、802.1Qat、802.1Qav 和 802.1Qbv),实现工业网络环境下的低延迟运行。 256 输入三元内容可寻址存储器 (TCAM) 实现实时监控、深层数据包检测 (DPI),并能监控网络中传输的数据内容(具有参考性访问控制和策略控制表)。 拒绝服务 (DoS) 预防机制能够检测到非法数据包,减轻 DoS 攻击造成的网络安全威胁。

    88E6393X 设备高性能 ARMADA® 网络处理系统级芯片 (SoC) 相配合,可以分担一些数据包处理活动,从而使 CPU 带宽更好地专注于更高级别的活动。由于服务质量 (QoS) 可以跨越支持多达 8 种通信类型,数据完整性得以提高。另外,该交换机 IC 也将其提升为可扩展解决方案。10 Gbps 接口提供无阻塞的上行链路,使其可将数个单元级联在一起,从而创造出更多端口数量的交换机(16 个、24 个等)。

    这款新产品的推出,集合占用空间小、功耗低、广泛安全和灵活度高等特点,可以为 SMB、企业、工业和 uCPE 空间提供一款高效的交换机 IC 解决方案。

  • February 22, 2018

    Marvell 在世界移动大会 2018 上展示 CyberTAN White Box 解决方案,该方案搭载 Marvell ARMADA 8040 SoC、运行 Telco Systems NFVTime 通用 CPE OS

    By Maen Suleiman, Senior Software Product Line Manager, Marvel

    随着更多的工作负载转移到网络边缘,Marvell 进一步推进技术发展,让通讯行业可以从网络功能虚拟化 (NFV) 获取优势条件,充分利用其巨大潜力。 At this year’s Mobile World Congress (Barcelona, 26th Feb to 1st Mar 2018), Marvell, along with some of its key technology collaborators, will be demonstrating a universal CPE (uCPE) solution that will enable telecom operators, service providers and enterprises to deploy needed virtual network functions (VNFs) to support their customers’ demands. 

    ARMADA® 8040 uCPE 解决方案是多个 ARMADA 边缘计算解决方案中的一个,该产品即将上市,展示地点位于 Arm 展位(6 号厅 6E30 展位),将运行 Telco Systems NFVTime uCPE 操作系统 (OS),带有两个已部署好的现有 VNF(分别由 6WINDTrend Micro 提供),可以实现虚拟路由和安全功能。  CyberTAN 白盒解决方案的设计是为了改变传统产品在具有性价比和系统能耗方面的不足,在非常大地改进这两方面因素的同时,保持非常高程度的安全性。

      CyberTAN 白盒解决方案装配 Marvell ARMADA 8040 SoC

    CyberTAN white box solution incorporating Marvell ARMADA 8040 SoC   The CyberTAN white box platform is comprised of several key Marvell technologies that bring an integrated solution designed to enable significant hardware cost savings. 该平台集成以 Arm Cortex®-A72 四核处理器为基础的低功耗 Marvell® ARMADA 8040 系统单晶片 (SoC),具备高达 2GHz 的 CPU 时钟频率,还搭载 Marvell E6390x Link Street® 板上以太网交换机。 Marvell 以太网交换机支持 10G 上行链路和 8 个 1GbE 端口,并集成 PHY,其中四个是自动介质 GbE 端口(组合端口)。

    CyberTAN 白盒得益于 Marvell ARMADA 8040 处理器的丰富功能组合以及强劲的软件生态系统,包含:

    • 都是商业和工业级功能
    • 双 10G 连接、10G 加密和 IPSEC 支持
    • 服从 SBSA
    • 支持 Arm TrustZone
    • 支持包括下列在内范围广泛的多种软件: UEFI、Linux、DPDK、ODP、OPTEE、Yocto、OpenWrt、CentOS 等等

    另外,uCPE 平台支持 Mini PCI Express (mPCIe) 扩展插槽,可以实现 Marvell 先进的 11ac/11ax Wi-Fi 或额外的有线/无线连接功能,还具备高达 16GB DDR4 DIMM、2 个 M.2 SATA、一个用于存储的 SATA 和 eMMC 选项,还有 SD 和 USB 扩展插槽可用于附加存储或其他有线/无线连接(例如 LTE)。

    在 Arm 展位,Telco Systems 将在 CyberTAN 白盒上演示其 NFVTime uCPE 操作系统,及其零接触服务开通 (ZTP) 功能。 NFVTime 是一款直观的 NFVi-OS,可以辅助将 VNF 部署到 uCPE 的整个过程,同时避免复杂繁琐的管理和协调活动,一般会随之实现基于 NFV 的服务。 该项演示将包括两个主要的 VNF:

    • 有一个 6WIND 虚拟路由器 VNF(基于 6WIND Turbo Router),可以提供很高的性能、即插即用的虚拟路由和防火墙功能;以及
    • 一个 Trend Micro 安全 VNF(基于 Trend Micro 的虚拟功能网络套件 (VNFS)),可提供灵活的高性能网络安全功能,实现威胁防御和更有效、更快速的保护。

    请联系您的 Marvell 销售代表,安排在世界移动大会期间会面,或在大会中莅临 Arm 展位(6 号厅 6E30 展位),亲眼见证 uCPE 解决方案的实施。

  • September 18, 2017

    模块化网络对数据中心升级具有性价比

    作者:Yaron Zimmerman,Marvell 公司高级职员产品线经理

    To support the server-to-server traffic that virtualized data centers require, the networking spine will generally rely on high capacity 40 Gbit/s and 100 Gbit/s switch fabrics with aggregate throughputs now hitting 12.8 Tbit/s. But the ‘one size fits all’ approach being employed to develop these switch fabrics quickly leads to a costly misalignment for data center owners.

    The switch can aggregate the data from lower speed network interfaces and so act as a front-end to the core network fabric. But such switches tend to be far more complex than is actually needed - often derived from older generations of core switch fabric. They perform a level of switching that is unnecessary and, as a result, are not cost effective when they are primarily aggregating traffic on its way to the core network’s 12.8 Tbits/s switching engines. The heightened expense manifests itself not only in terms of hardware complexity and the issues of managing an extra network tier, but also in relation to power and air-conditioning. It is not unusual to find five or more fans inside each unit being used to cool the silicon switch.

    An attractive feature of this standard is the ability to allow port extenders to be cascaded, for even greater levels of modularity.

    Reference designs have already been built that use a simple 65W open-frame power supply to feed all the devices required even in a high-capacity, 48-ports of 10 Gbits/s. Furthermore, the equipment dispenses with the need for external management. The management requirements can move to the core 12.8 Tbit/s switch fabric, providing further savings in terms of operational expenditure. It is a demonstration of exactly how a more modular approach can greatly improve the efficiency of today's and tomorrow's data center implementations.

  • July 17, 2017

    合理精简以太网

    作者:Marvell 公司资深架构师 George Hervey

    Implementation of cloud infrastructure is occurring at a phenomenal rate, outpacing Moore's Law.

    More and more switches are required, thereby increasing capital costs, as well as management complexity. To tackle the rising expense issues, network disaggregation has become an increasingly popular approach. By separating the switch hardware from the software that runs on it, vendor lock-in is reduced or even eliminated.

    The number of managed switches basically stays the same.

    Network Disaggregation 

    Almost every application we use today, whether at home or in the work environment, connects to the cloud in some way. Our email providers, mobile apps, company websites, virtualized desktops and servers, all run on servers in the cloud. 

    As demand increases, Moore's law has struggled to keep up. Scaling data centers today involves scaling out - buying more compute and storage capacity, and subsequently investing in the networking to connect it all.

    Buying a switch, router or firewall from one vendor would require you to run their software on it as well. Larger cloud service providers saw an opportunity. These players often had no shortage of skilled software engineers.

    802.1BR 

    Today's cloud data centers rely on a layered architecture, often in a fat-tree or leaf-spine structural arrangement. Rows of racks, each with top-of-rack (ToR) switches, are then connected to upstream switches on the network spine. The ToR switches are, in fact, performing simple aggregation of network traffic. Using relatively complex, energy consuming switches for this task results in a significant capital expense, as well as management costs and no shortage of headaches. 

    By replacing ToR switches with port extenders, port connectivity is extended directly from the rack to the upstream.

    The Next Step in Network Disaggregation 

    Though many of the port extenders on the market today fulfill 802.1BR functionality, they do so using legacy components. Instead of being optimized for 802.1BR itself, they rely on traditional switches. This, as a consequence impacts upon the potential cost and power benefits that the new architecture offers. 

    Designed from the ground up for 802.1BR, Marvell's Passive Intelligent Port Extender (PIPE) offering is specifically optimized for this architecture. PIPE is interoperable with 802.1BR compliant upstream bridge switches from all the industry’s leading OEMs. It enables fan-less, cost efficient port extenders to be deployed, which thereby provide upfront savings as well as ongoing operational savings for cloud data centers.

    802.1BR's port extender architecture is bringing about the second wave, where ports are decoupled from the switches which manage them.

  • 2017 年 5 月 31 日

    无线办公的重大推进

    作者:Yaron Zimmerman,Marvell 公司高级职员产品线经理

    现代企业办公环境正在逐步地向大量的无线连接方式转变,从而给员工提供更大的工作便利,以及实现更便捷的管理。 有了无线技术所提供的便利,办公人员将不再受限于哪里有电缆/端口,因而具有更高的可移动性。 It will mean that they can remain constantly connected and their work activities won’t be hindered - whether they are at their desk, in a meeting or even in the cafeteria. This will make enterprises much better aligned with our modern working culture - where hot desking and bring your own device (BYOD) are becoming increasingly commonplace. 

    这一趋势不断加速的主要原因是 802.11ac Wave 2 Wi-Fi 技术的出现。 由于这种技术可以实现千兆位数据速率(从而支持视频流媒体、更快的下载速度以及更高质量的视频会议等等),因而它具有很大的吸引力。 In addition, this protocol offers extended range and greater bandwidth through multi-user MIMO operation - so that a larger number of users can be supported simultaneously. 特定数量的用户需要的接入点更少,这对企业来说非常具有优势。Pipe

    图1是一个针对企业/园区办公室平面图的例子,其中有大量的隔间,还有一些会议室。 虽然具体情况有所不同,但一般来说,企业/园区的占地面积可能在 20,000 至 45,000 平方英尺之间。 一个 802.11ac 接入点可以覆盖 3,000 到 4,000 平方英尺的面积,因而一个无线办公室需要总共约 8 到 12 个接入点才能充分覆盖。 如果是满足日常的语音和数据需求,这个密度应该可以接受, 而支持这些接入点的将是一个高容量的有线主干网络。

    企业/园区主干网正在越来越多地采用基于 25 千兆以太网技术的基础设施,而不是传统的 10 千兆以太网。 在未来 2-3 年中,随着相关光学器件的价格变得更加实惠,预计 25 千兆以太网技术将会在新建办公楼得到更广泛地采用。 显然,企业希望利用 802.11ac 技术所提供的更高性能,但是他们在这样做时,也必须遵守严格的预算限制。 随着主干网数据容量的提高,其下层的分层网络结构由于包含各种中间交换机技术,其复杂性也会相应上升。 这些都是根据传统理论得出的结论。

    在开始实施 25 千兆以太网技术/ 802.11ac 之前,企业必须充分认识到这种技术带来的问题。 除了刚刚提到的与硬件安装相关的初始投资,还必须考虑持续运营成本。 By aggregating the access points into a port extender that is then connecting directly to the 25 Gigabit Ethernet backbone instead towards a central control bridge switch, it is possible to significantly simplify the hierarchical structure - effectively eliminating a layer of unneeded complexity from the system. 

    Marvell 公司正在通过采用一种被动智能端口扩展 (PIPE) 的技术来实现上述目的。 这种产品是市场上特有的技术,目前可用的其他端口扩展器并不是为了这个目的而设计,因此在性能、价格和功率方面都没有进行优化。 PIPE is, in contrast, an optimized solution that is able to fully leverage the IEEE 802.1BR bridge port extension standard - dispensing with the need for expensive intermediary switches between the control bridge and the access point level and reducing the roll-out costs as a result. 由于不再将多个 802.11ac 接入点聚合到 10 千兆以太网交换机上,吞吐量因此可得到大幅提升。 同时因为需要管理的网络单元减少,持续运营成本也随之降低。

    PIPE means that enterprises can future proof their office data communication infrastructure - starting with 10 Gigabit Ethernet, then upgrading to a 25 Gigabit Ethernet when it is needed. 它所包含的端口数量能够与企业/校园需要的接入点数量相匹配,以满足员工的无线连接需求。 它支持双归属 (dual homing) 功能,从而通过系统冗余来确保更高的服务可靠性和灵活性。 In addition, supporting Power-over-Ethernet (PoE), allows access points to connect to both a power supply and the data network through a single cable - further facilitating the deployment process.

  • April 03, 2017

    手机的出现如何点燃当今的数据需求增长

    作者:Sander Arts,Marvell 市场营销代理副总裁

    1973 年 4 月 3 日,也就是大约 44 年以前,一位名叫 Martin Cooper 的工程师沿着曼哈顿的街道往前走,手里拿着个像砖头一样的设备,拨通了有史以来的第一次移动通话。 世界上第一部移动设备重量达到令人乍舌的 2.5 磅,高 11 英寸,突出特点是只有一条线路、只能发送短信的 LED 显示屏。 

    版权: 维基百科

    从那以后发生了很多变化。 电话变得更小、更快,也更智能,以四十年前人们无法想象的速度更新换代。 今天,打电话只是我们期望移动设备承担的众多功能之一,此外它还要能上网浏览、观看视频、查找方位、参与社交,还有其他各种功能。 所有这些活动都要求数据的快速移动和存储,与最初的 PC 更加相似,而非 Cooper 的 2.5 磅原型机。 而且这还只是个开始,数据需求的增长比移动技术的更新换代更加迅速。

    数据需求: 超越无限!

    现今的消费者可以使用各种各样的设备,几乎瞬时读取来自全世界的内容,这些设备包括智能手机、平板电脑、汽车,甚至是家用电器。 不管是大型活动,比如超级碗 LI,还是普通的一天,数据使用量都在迅猛增长,人们跟朋友、家人和世界各地的陌生人交流,分享想法、上传照片、观看视频、玩游戏,还有很多其他的活动。

    根据 Domo 所做的一项研究,在美国,消费者每分钟要使用超过 180 万兆字节无线数据。 在最近的 2017 美国 OCP 峰会上,Facebook 宣称每天会有 9500 万份照片和视频通过 Instagram 发布,而这还只是单独一个应用程序。随着我们的世界变得更加智能、连接程度更高,数据需求只会继续不断增长。

      版权: Marvell

    下一代数据移动和存储

    在 Marvell,当我们在从消费者到云端的广阔市场范围中变革数据移动和存储方式,我们注重的是更加安全、可靠和高效的帮助客户移动和存储数据。 世界每天都会创建和移动数量惊人的数据,我们理所当然享受着现有的科技,几乎已经无法想象科技萌芽时期的笨拙。

    我们未来的设备将承担何种功能来支持数据需求呢? 给我们在 Tweet 留言 @marvellsemi 告诉我们你的想法!

  • March 17, 2017

    三天,两次谈话和一条新生产线: Marvell 高调亮相 2017 年美国 OCP 峰会,发布符合 IEEE 802.1BR 标准的数据中心 解决方案

    作者:Michael Zimmerman,Marvell CSIBU 副总裁兼总经理

    At last week’s 2017 OCP U.S. Summit, it was impossible to miss the buzz and activity happening at Marvell’s booth. Taking our mantra #MarvellOnTheMove to heart, the team worked tirelessly throughout the week to present and demo Marvell’s vision for the future of the data center, which came to fruition with the launch of our newest Prestera® PX Passive Intelligent Port Extender (PIPE) family. 

    But we’re getting ahead of ourselves… DSC00242 Marvell kicked off OCP with two speaking sessions from its leading technologists. Yaniv Kopelman, Networking CTO of the Networking Group, presented "Extending the Lifecycle of 3.2T Switches,” a discussion on the concept of port extender technology and how to apply it to future data center architecture. Michael Zimmerman, vice president and general manager of the Networking Group, then spoke on "Modular Networking" and teased Marvell's first modular solution based on port extender technology. 

    Marvell's Prestera PX PIPE family purpose-built to reduce power consumption, complexity and cost in the data center 

    Marvell’s 88SS1092 NVMe SSD controller designed to help boost next-generation storage and data center systems 

    Marvell’s Prestera 98CX84xx switch family designed to help data centers break the 1W per 25G port barrier for 25G Top-of-Rack (ToR) applications 

    Marvell’s ARMADA® 64-bit ARM®-based modular SoCs developed to improve the flexibility, performance and efficiency of servers and network appliances in the data center 

    Marvell’s Alaska® C 100G/50G/25G Ethernet transceivers which enable low-power, high-performance and small form factor solutions 

    We’re especially excited to introduce our PIPE solution on the heels of OCP because of the dramatic impact we anticipate it will have on the data center… 

    PIPE-Data

    Amidst all of the announcements, speaking sessions and demos, our very own George Hervey, principal architect, also sat down with Semiconductor Engineering’s Ed Sperling for a Tech Talk. In the white board session, George discussed the power efficiency of networking in the enterprise and how costs can be saved by rightsizing Ethernet equipment. 

    Summit was filled with activity for Marvell, and we can’t wait to see how our customers benefit from our suite of data center solutions.

    What were some of your OCP highlights? Did you get a chance to stop by the Marvell booth at the show? Tweet us at @marvellsemi to let us know, and check out all of the activity from last week. We want to hear from you!

  • March 13, 2017

    端口扩展器技术让网络交换焕然一新

    作者:Marvell 公司资深架构师 George Hervey

    PIPE-Data-Center_V21-sized Our lives are increasingly dependent on cloud-based computing and storage infrastructure. It is no surprise therefore that the demands on such infrastructure are growing at an alarming rate, especially as the trends of big data and the internet of things start to make their impact. With an increasing number of applications and users, the annual growth rate is believed to be 30x per annum, and even up to 100x in some cases. Such growth leaves Moore’s law and new chip developments unable to keep up with the needs of the computing and network infrastructure. These factors are making the data and communication network providers invest in multiple parallel computing and storage resources as a way of scaling to meet demands.

    Within a data center a classic approach to networking is a hierarchical one, with an individual rack using a leaf switch – also termed a top-of-rack or ToR switch – to connect within the rack, a spine switch for a series of racks, and a core switch for the whole center. And, like the servers and storage appliances themselves, these switches all need to be managed. In the recent past there have usually been one or two vendors of data center network switches and the associated management control software, but things are changing fast. Most of the leading cloud service providers, with their significant buying power and technical skills, recognised that they could save substantial cost by designing and building their own network equipment. Many in the data center industry saw this as the first step in disaggregating the network hardware and the management software controlling it. With no shortage of software engineers, the cloud providers took the management software development in-house while outsourcing the hardware design.

    The concept rests on the belief that there are many nodes in the network that don’t need the extensive management capabilities most switches have. Essentially this introduces a parent/child relationship, with the controlling switch, the parent, being the managed switch and the child, the port extender, being fed from it. This port extender approach was ratified into the networking standard 802.1BR in 2012, and every network switch built today complies with this standard.

    Look under the lid of a port extender and you’ll find the same switch chip being used as in the parent bridge. We have moved forward, sort of. Without a chip specifically designed as a port extender switch vendors have continued to use their standard chips sets, without realising potential cost and power savings. However, the truly modular approach to network switching has taken a leap forward with the launch of Marvell’s 802.1BR compliant port extender IC termed PIPE – passive intelligent port extender, enabling interoperability with a controlling bridge switch from any of the industry’s leading OEMs. It also offers attractive cost and power consumption benefits, something that took the shine off the initial interest in port extender technology. Seen as the second stage of network disaggregation, this approach effectively leads to decoupling the port connectivity from the processing power in the parent switch, creating a far more modular approach to networking.

    Marvell’s Prestera® PIPE family targets data centers operating at 10GbE and 25GbE speeds that are challenged to achieve lower CAPEX and OPEX costs as the need for bandwidth increases. The Prestera PIPE family will facilitate the deployment of top-of-rack switches at half the cost and power consumption of a traditional Ethernet switch. The PIPE approach also includes a fast fail over and resiliency function, essential for providing continuity and high availability to critical infrastructure.

  • January 20, 2017

    全新的扩展范例:以太网端口扩展器

    作者:Michael Zimmerman,Marvell CSIBU 副总裁兼总经理

    Over the last three decades, Ethernet has grown to be the unifying communications infrastructure across all industries. More than 3M Ethernet ports are deployed daily across all speeds, from FE to 100GbE. In enterprise and carrier deployments, a combination of pizza boxes — utilizing stackable and high-density chassis-based switches — are used to address the growth in Ethernet. However, over the past several years, the Ethernet landscape has continued to change. With Ethernet deployment and innovation happening fastest in the data center, Ethernet switch architecture built for the data center dominates and forces adoption by the enterprise and carrier markets. This new paradigm shift has made architecture decisions in the data center critical and influential across all Ethernet markets. However, the data center deployment model is different.  

    How Data Centers are Different

    Ethernet-Extenders The ultimate goal is to pack as many Ethernet ports at the highest commercially available speed onto the Ethernet switch, and make it the most economical and power efficient. The end point connected to the ToR switch is the server NIC which is typically the highest available speed in the market (currently 10/25GbE moving to 25/50GbE). Today, 128 ports of 25GbE switches are in deployment, going to 64x 100GbE and beyond in the next few years. But while data centers are moving to higher port density and higher port speeds, and homogenous deployment, there is still a substantial market for lower speeds such as 10GbE that continues to be deployed and must be served economically. The innovation in data centers drives higher density and higher port speeds but many segments of the market still need a solution with lower port speeds with different densities. How can this problem be solved?  

    Bridging the Gap

    The IEEE standards codified the 802.1br port extender standard as the protocol needed to allow a fan-out of ports from an originating higher speed port. In essence, one high end, high port density switch can fan out hundreds or even thousands of lower speed ports. The high density switch is the control bridge, while the devices which fan out the lower speed ports are the port extenders.  

    Why Use Port Extenders

    In addition to re-packaging the data center switch as a control bridge, there are several unique advantages for using port extenders:

    Port extenders are only a fraction of the cost, power and board space of any other solution aimed for serving Ethernet ports.

    Port extenders have very little or no software. This simplified operational deployment results in the number of managed entities limited to only the high end control bridges.

    Port extenders communicate with any high-end switch, via standard protocol 802.1br. Additional options such as Marvell DSA, or programmable headers are possible.)

    Port extenders work well with any transition service: 100GbE to 10GbE ports, 400GbE to 25GbE ports, etc.

    Port extenders can operate in any downstream speed: 1GbE, 2.5GbE, 10GbE, 25GbE, etc.

    Port extenders can be oversubscribed or non-oversubscribed, which means the ratio of upstream bandwidth to downstream bandwidth can be programmable from 1:1 to 1:4 (depending on the application). This by itself can lower cost and power by a factor of 4x.

        Port-Extenders  

    Marvell Port Extenders

    Marvell has launched multiple purpose-built port extender products, which allow fan-out of 1GbE and 10GbE ports of 40GbE and 100GbE higher speed ports. Along with the silicon solution, software reference code is available and can be easily integrated to a control bridge. Marvell conducted interoperability tests with a variety of control bridge switches, including the leading switches in the market. The benchmarked design offers 2x cost reduction and 2x power savings. SDK, data sheet and design package are available. Marvell IEEE802.1br port extenders are shipping to the market now. Contact your sales representatives for more information.

  • January 09, 2017

    以太网达尔文主义: 适者生存(唯快不破)

    作者:Michael Zimmerman,Marvell CSIBU 副总裁兼总经理

    The most notable metric of Ethernet technology is the raw speed of communications. With the introduction of 100BASE-T, the massive 10BASE-T installed base was replaced, showing a clear Darwinism effect of the fittest (fastest) displacing the prior and older generation. However, when 1000BASE-T (GbE – Gigabit Ethernet) was introduced, contrary to industry experts’ predictions, it did not fully displace 100BASE-T, and the two speeds have co-existed for a long time (more than 10 years). In fact, 100BASE-T is still being deployed in many applications. The introduction — and slow ramp — of 10GBASE-T has not impacted the growth of GbE, and it is only recently that GbE ports began consistently growing year over year. This trend signaled a new evolution paradigm of Ethernet: the new doesn’t replace the old, and the co-existence of multi variants is the general rule. The introduction of 40GbE and 25GbE augmented the wide diversity of Ethernet speeds, and although 25GbE was rumored to displace 40GbE, it is expected that 40GbE ports will still be deployed over the next 10 years1. Ethernet-Diversity Hence, a new market reality evolved: there is less of a cannibalizing effect (i.e. newer speed cannibalizing the old), and more co-existence of multiple variants. This new diversity will require a set of solutions which allow effective support for multiple speed interconnect.

    能够经济地缩小到几个端口2

    Support of multiple Ethernet speeds

    The first products in the family are the Prestera® 98DX83xx 320G interconnect switch, and the Alaska® 88X5113 25G/40G Gearbox PHY. The 98DX83xx switch fans-out up to 32-ports of 10GbE or 8-ports of 40GbE, in economical 24x20mm package, with power of less than 0.5Watt/10G port. Interconnect1 The 88X5113 Gearbox converts a single port of 40GbE to 25GbE. The combination of the two devices creates unique connectivity configurations for a myriad of Ethernet speeds, and most importantly enables scale down to a few ports. While data center- scale 25GbE switches have been widely available for 64-ports, 128-ports (and beyond), a new underserved market segment evolved for a lower port count of 25GbE and 40GbE. Marvell has addressed this space with the new interconnect solution, allowing customers to configure any number of ports to different speeds, while keeping the power envelope to sub-20Watt, and a fraction of the  hardware/thermal footprint of comparable data center solutions. The optimal solution to serve low port count connectivity of 10GbE, 25GbE, and 40GbE is now well addressed by Marvell. Samples and development boards with SDK are ready, with the option of a complete package of application software.Interconnect2

档案文件